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SPATIAL AND TEMPORAL COHERENCE OF A 35 GHz

GYROMONOTRON USING THE TEO, CIRCULAR MODE

INTRODUCTION

There has been considerable recent interest in cyclotron masers (commonly

called gyrotrons) for the production or amplification of high power millimeter

wavelength radiation.(1-5) These devices have demonstrated higher efficiency

and average power capabilities at higher frequencies (28-330 GHz) than conven-

tional microwave tubes. (6-8) One class of these devices, the single cavity

oscillator (gyromonotron) is of interest for radar and to the fusion community

for electron cyclotron heating. (9- 12 ) Several of these devices have been real-

ized, with the highest power (1 MW at 3.5 mm) reported by Flyagin (2 ) in the USSR.

In this letter we describe a gyromonotron operating at 35 GHz with an out-

put power of 147 kW. This device is the first gyrotron reported at this fre-

quency and is unique in that it operates in the TE01 (circular) mode, which is

readily converted to a linearly polarized rectangular mode. The gyrotron was

specifically designed as a source for electron cyclotron heating (ECH) experi-

ments in tokamaks, and thus has a long pulse length (20 r-), and utilizes the

TE011 mode. This latter feature allows the linear polarization of the radiation

with a commercial mode converter and will permit the examination of the effect

of polarization in ECH experiments. We also report for the first time measure-

ments of the temporal and spatial coherence of a gyromonotron.

Design

The operating parameters of the gyromonotron were determined using the lin-

ear theory of Chu(13) and non-linear calculations employing an orbit integrator

V, : developed originally by Drobot (14) and modified by the authors.

The device parameters are given in Table 1. A schematic is shown in Figure

1. To produce the electron beam a magnetron type electron gun designed by Seftor
(15)

et al was used. The magnetic field for both the gun and microwave interaction

* Manuscript submitted April 18, 1980.
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regions was produced by a superconducting solenoid. The field at the cavity was

approximately 13.2 kGauss.

The cavity was modified right-circular, with the profile shown in Figure

2a, supporting an electromagnetic field with an electric field profile given in

Figure 2b. This profile was measured in the cavity in the absence of the elec-

tron beam. The taper, given in Figure 2a, was expected to give some improvement
(16-20)

in efficiency but was chosen rather arbitrarily, and is not necessarily optimal.

As in most gyromonotrons, (1) the wave frequency was just slightly above cut-off,

and the length was 3.3 free space wavelengths. This length was shorter than that

for optimum efficiency (equal to 5.5 X) in order to maximize the output wave pow-

er without operating near the diffraction limited Q.(2 1) The use of a very low

Q was rejected since it was expected that the device would then be influenced ex-

cessively by external reflections, which in the case of ECH experiments were of

unknown magnitude. Enhancement of the Q over the diffraction limit was produced

by a small iris and an abrupt step to the output guide diameter at the output of

the cavity.

The output guide was 0.80 cm in radius, a value such that the TE02 mode was

cut off at 35 GHz. This eliminated the most likely form of mode conversion at

the output of the cavity. Two different collector geometries were tried. For

short pulses (1 Usec) the collector was formed by the output guide, while the

20 msec version required a 5 cm diameter collector. No difference in the perfor-

mance of the tube was observed (other than the ability to dissipate beam energy)

with the two collectors. The output window was a tuned disk of Beryllia.

k:, •The mode converter was of the type manufactured by Hitachi. (22 )  It was

found to be capable, with pressurization of 2 atm. of SF6, of withstanding break-

down to more than 147 kW.
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Results

A maximum power of 147 kW was produced, with an efficiency of 31% achieved

at 100 kW. (With the large diameter collector, pulses of up to 20 msec were

achieved with an output of 100 kW, yielding a total radiated energy of 2 kilo-

joules.)

The behavior of the device with variations of the beam current and the

magnetic field can be compared with theory. Figure 3 shows both the calcu-

lated and experimentally observed efficiency as a function of the beam current

for optimized magnetic fields. (Here the efficiency of the device is defined

as the ratio of the output power to the beam power.) The theoretical effi-

ciencies have been calculated with allowance for cavity, output guide, and

window losses, which are expected, in the experimental device, to amount to

12%.

Two theoretical curves are given, corresponding to different values for

a, the ratio of the perpendicular to parallel beam electron velocities. The

design value for a for the electron gun used in the experiment was 1.5, but

small variations in the applied voltages and magnetic fields could result in

an a as high as 1.8. (15) (No direct measurement of this parameter has been

made.) Additionally, we note that the electromagnetic fields used in the cal-

culation were those of an unperturbed right-circular cavity. These fields are

a close approximation to those measured in cold tests, but may not be those

existing in the presence of the beam. With the inclusion of these uncertain-

ties, and an estimate of experimental errors, the observed and predicted re-

sults are in reasonable agreement.

We note that the peak in efficiency occurs for a beam current of 3 Amperes,

and that the efficiency drops to 0.24 for 9 Amperes. The strength of the in-

teraction, and therefore the efficiency, is determined by the magnitude of the

-3-

4:.

I'1
ti



RP electric field strength in the cavity, which ia in turn determined by the

beam current and cavity Q. Straightforward argumients show that the efficiency

will remain constant for a constant value of Q1. It is therefore clear that for

higher power operation, a lower value of Q is required.

In order to evaluate the effect of changing Q, operation was also attempted

with quality factors of 400 and 1600. As expected, a Q of 1600 yielded the same

efficiency as that of 800 (Figure 3) but at a current of 1.8 Amperes. Operation

with a Q of 400 was plagued by the appearance of a parasitic oscillation In the

input guide, as the starting currents for this and the desired cavity mode ap-

peared to be approximately equal. The maximum efficiency for this case was 0.17,

and the operation was extremely erratic. It is postulated that the parasitic

oscillation occurred in the TE 21 mode, since this mode is close to cutoff in the

input guide at the observed frequency of 31 GHz.

The Q - 400 oscillator also appeared to be sensitive to reflections at the

output. Further investigation is desirable to determine if this is due to the

low value of Q, since, as is mentioned above, even lower values of Q are required

to reach higher output powers.

Figure 4 shows the dependence of both the observed and the theoretically

predicted efficiencies on the magnitude of the magnetic field at the cavity for

a beam current of 3 Amperes. Agreement between theory and experiment appears

good for higa values of the field magnitude, but poor for low values. The reason

for the discrepancy is not clear, although it may be due to variations of the gun

performance with changes in the magnetic field.

Effect of Beam Velocity Spread

The electron gun is predicted to have a spread in velocities parallel to the

magnetic field of approximately 11015) to 155 percent. Initial calculations

indicate that the oscillator operation should be substantially unaffected by ye-

-4-
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locity distributions below 20%. The agreement between the theoretical and ob-

served efficiency supports these calculations. We note that this tolerance to

relatively high velocity spreads may be a fundamental difference between the

gyrotron oscillator and the gyrotron travelling wave amplifier, as it is theo-

retically predicted (5 ) that the amplifier may require much higher quality

beams for efficient operation.

Spectrum and Mode Purity

With the oscillator operating in the long pulse (10 msec) mode, it was

possible to obtain a spectrum of the output radiation by sweeping a frequency

analyzer during a single pulse. The result, shown in Figure 5, indicates a

line width of 1.5 MHz. (This gives a maximum line width of 4 parts in 105.)

This appears to be an upper bound, since it was observed that the frequency

variations during the analyzer sweep were of the same order. These variations

were measured by manually sweeping the analyzer so that different points in

the pulse could be observed on a shot-to-shot basis. The variations appeared

to be well correlated with modulator voltage fluctuations.

A measure of the mode purity was obtained by observing output power directly

in the TE mode with a calorimeter, with and without a filter preceding the
01

calorimeter. The filter consisted of a tightly wound helix waveguide which

strongly attenuated all modes other than the TEoI and was cut off to the

TE02 mode. No difference in the output power was observed when the filter

was inserted. This measurement of the power was also in agreement with

that mode using the Hitachi mode converter and a calibrated cyrstal in a

WR-28 mount. The mode impurity can then be inferred to be less that 5%,

the accuracy of the calorimeter.
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Conclusion

The oscillator has been shown to operate as theoretically predicted,

and at power levels and pulse lengths useful for ECH and radar applications.

Linear polarization of the TE0 1 radiation is straightforward for these powers

and pulse lengths. Efficient operation was achieved with little difficulty,

although attempts at high power via lower Q factors met with problems in the

form of parasitic oscillations and reflections from the load. These difficul-

ties will have to be overcome in order to realize higher power devices. The

device has a spectral purity at least comparable with other high quality micro-

wave sources, and appears to be presently limited only by modulator voltage

variations.
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Table 1

Gyromonotron Design Parameters

Beam Voltage 70 kV

Beam Current 4 - 10 Amperes

Frequency 35 GHz

Cavity Length 2.86 cm

Maximum Cavity Radius 0.53 cm

Cavity Q 800

Cavity Mode TE (modified)
Oil
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(a) Diagram of the cavity used for the Q - 800 oscillator cavity

(the dimensions are in centimeters)
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(b) Electric field profile for the cavity of 2(a)
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Fig. 3 - Output efficiency of the oscillator with Q - 800 as a function of beam
current. The magretic field at the cavity has been optimized for each point. The
two curves were generated by the code, using different values of a.
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Fig. 5 Spectrum of the osillator. The spectrum analyzer sweep time was
short compared to the pulse length; therefore, this is a CW spectrum
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